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BURGERIS EQUATION AND SHOCK WAVES

PROPAGATING WITHIN LIQUID-GAS MIXTURES

I

The transient behaviour occuring when a weak shock wave propagates

into an inviscid and incompressible liquid containing small gas bubbles is

examined in the long-time regime. A semi-infinite shock-tube filled with a

liquid-gas mixture and fitted at one end with a moveable piston is

considered. when the piston is set into otion at constant velocity (u), a

wave propagates into the liquid-gas mixture and is modified by dissipatiK

processes and by non-linear effects associated with convection. The

dissipative processes involved in this analysis are viscosity and thermal

conductivity. The effects produced by these processes upon the shock-wave

propagation can be complicated since both waveform and velocity are modified

under their influence. Non-linear effects also modify the wave form and

become important when of comparable magnitude to the dissipative processes.

This situation will arise if viscosity and thermal conductivity cause velocity

gradients to decrease. Thus in the far field, we could expect the exact

solution to approximate a steady compression wave. Since viscous forces exert

their greatest effect in the region of the shock transition, this region will

be discussed in detail.

The linear theory (van Leuwen (1984)) starts with the Wavier-Stokes

equations for a fluid gas mixture and expands the dependent variables using a
perturbation series. ,By retaining terms to order 0(c), the equations of (
mass, momentam and energy can be solved for both the near field and far field

solutions. In the case of the far field, the solutions are given in

Appendix 1. Thee solutions can be shown to break down, when t becomes

large, aid this feature can be illustrated as follows. The width of the
shock transition son* (Thompson (1972), Gilbarg and Paolucci (19S3)) is:

I1 J-:
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for the case where the velocity, as given by Al, is of order 0(/t). Hence as
t increases the size of the shock trarsition zone also increases. It is well
known however that 8 is of order O(W-') for steady weak shock waves, '
where e is anIppropriate perturbation parameter; thus when t becomes large
compared to c , the linearized solution yields an excessively broad shock
wave and so fails to describe the phenomena adequately.

In the present paper a uniformly satisfactory far-field solution is
sought for a shock wave propagating into a liquid-gas mixture. Using
"stretched" coordinates and singular perturbation methods a uniformly valid
solution for t + - can be derived. Conditions at infinity and elsewhere are
assumed uniform.

An analogous type of piston problem has been studied and solved by
Moran and Shen (1965) (Referred subsequently to as MS), for a viscous heat-
conducting gas, using continuum theory. They found that the2 linearized
Navier-Stokes equations are valid for times as large as O(W- ) mean free time
after the piston is set in motion, while at larger times the solution is
governed by Burger's equation. Crespo (1969) has considered the propagation
of infinitesmally small sound waves in a liquid containing gas bubbles, taking
into account the relative notion of the bubbles and liquid. Also the
structures of shock waves in liquids containing gas bubbles have been examined
by Campbell and Pitcher (1958) and van Wijngaarden (1970). The methodologies
of MS and Crespo are closely followed in this paper. A continuum description
of the liquid-gas mixture is given in section 2 together with simplifying
assumptions. The method of analysis employed is to construct the exact form
of the Navier-Stokes (US) equations for the conservation of mass, energy and
momentum in a one-dimensional viscous unsteady flow, together with boundary
conditions appropriate to the piston problem. The dependent variables
appearing in the US equations are then expanded in the usual form:

1 @ = 0 10 1 + € ( 1 +  .2(2 .....'

and terms of order 0{( 2 ) are retained. The US equationn to order 0(c) adopt a
steady-state form in the wave frame, while to order (e ) the time evolution
effects come into play.

2. BASIC EQUATIONS MD MD .

The liquid host-mediumn is assumed to be impregnated with gas bubbles
of fixed size and homogeneous distribution. The liquid is also assumed
incompressible and inviscid. (The gas obeys the perfect gas law.) The state
of the liquid can be described in term of its velocity u, pressure Pt
density pIand temperature T ; for the gas the corspnh quantities are
u , P pasidY T The volime fraction of the bubble, in an aerated liquid
wJth Inidal volme Vo is denoted by 5, so that (1-0) is the volume fraction
of the fluid. The liquid is taken to have a large heat capacity and that

2
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variations in pressure and temperature at the equilibrium state can be

neglected, is.,

T I - T -o 0
g at equilibrium

P I Pg - 0 )1

The above condition with respect to pressure implies that the radius of the
gas bubbles is small compared to the width of the shock transition zone.

Further assumptions made are (i) that the viscous forces are attributable to
gas bubble drag, (ii) that heat transfer occurs only between the gas bubbles
and surrounding liquid, and (iii) that the thermal motion of the gas bubbles
is negligible and so does not contribute to the pressure.

Both dependent and independent variables arl initiAlly e.xpressed in
a coordinate system designated in term of 00 (ie., 9 = (u,P,p,$,T)), but for

convenience the is dropped from all equations.

In the nomenclature described above, the exact Navier-Stokes
equations (see Ockendon and Tayler (1983)) expressing the conservation of
mass, momentum and energy of a liquid-gas system become for a one-dimensional
unsteady flow (van Leauven (1984), Crespo (1969), US) as:

(i) Equation of continuity:

a (1-0) + 3 (1-0)u 0, (2.1a)t x

(ii) Equation of continuity for the gas:

a (OP ) + a UP ) O, (2.1b)t g x gg9

(iii) Equation of momentum for the liquid-gas composition:

Pt( -0)()tut + Ut&xud) + 3 xPI - o, (2.1c)

(iv) Equation of momentum for the gas:

r 9 41 2/
a P 1 ,( utq+ u )a - - 0 ~- .1) - 0, 2.

xi 2 t~atu 9  qxt 2 &A 'm' A

where u g P. - U.

3 l



v) Equation of energy for the gas:

+u'1 --- (3 p +u113%)-

4Up 2/3

- 3(y- I)Ot(--) (T - T 0, (2.1e)

where 3 denotes partial differentiation (elsewhere the alternative notation
' will also be used).

(vi) The equation of state for a thermally-perfect single-component,
dilute gas is given by

Pg W pgRTg, (2.lf)

where R is the universal gas constant. The corresponding liquid equation of
state is simply p, - constant.

In the above equations v and a I are the kinematic viscosity, and
the thermal conductivity of the fluid respectively, y is the ratio of
specific heats of the gas, and r is a function which depends on 9 and which
for 0 small is essentially unity (Crespo (1969)).

One approach to solving the above equations is to apply the
fundamental principle of dimensional analysis (is., every problem must be
expressible in terms of dimensionless variables). Firstly we seek
dimensionless variables for the independent variables (x,t). An examination
of the physical constants appearing in (2.1) reveals shows that a constant
with dimensions of length, can be formed which renders x and t
dimensionless. That is, we can choose without loss of generality a length
scalek-aereu&,where re is the radius of a gas bubble and a e e is the
equilibrium spe Of sound in the liquid, such that: 4

- kx, (2.2a)

t tet (2.2b) /

Similarly the dependent variables * - (u,ppgy) can also be reduced to

dimensionless form, following the example of KS.

The dimensionless fluid variables can be expressed asymptotically in
termn of fluid variables as a power series in t about the equilibrium
state {0,Pe,,.,B } ie.,

+";- (i + = (1) + C2#(2) + .), (2.3a)
,i ' '

i o4



A Ar
for the state variables Pp,o and T, and as

C - C ( (1) + C*(2) + .-- (, 12.3b)

for u. The dimensionless perturbation variable c is chosen as a measure of
the piston Mach number

u
C -- ,P (2.4)a

e

where up is the initial piston velocity.

The linear theory fails when the diffusion thickness and the
compression wave thickness are equal, ie., when t - C2. To find a uniformly
valid solution for t>e "2 (ie., for the far field) where the linear theory is

no longer valid, it is necessary to introduce *stretched" coordinates for the
dimensionless independent variables, in order to take into account slow
variations in the wave form. This can be achieved by introducing the
following scale transformation for the independent variables (Su and Gardiner

(1969)):

C cq(x - Xt), (2.5a)

T C t, (2.5b)

where X is a dimensionless constant related to the velocity of propagation of

the disturbance, and is to be determined by the analysis. The quantity n is a
positive constant (also to be determined) such that time variations of any
state variable are balanced by both non-linear and dissipative effects.

In the present nomenclature, the system of equations (2.1) can be
expressed in dimensionless variables. The scheme is illustrated by
considering the continuity equation (2.1a). After a change of independent
variables from (x,t) to (x,t) equation (2.1a) becomes:

ae3 t (1-0) + 0 x 0- 0 )u t-O. (2.6)

Eploying (2.5a) and (2.3) we obtain to order O() the steady state equation:

A0e 011) + (1-0e) (  - 0, (2.7a)

and to order 01e2):

1A9 a (2) - 0 (1) + (1-0 )9 u(2) - (1) 3 u (1)

t

iS



Be u 0 ) (1) - O, (2.10a)it

which now incorporates time-evolution effects. Proceeding in a like manner
for the remaining equations we obtain to order 0(e):

(1)= (1) (1) (1 ) (1) =O, (2.71)

g g = 9g - Pg

l,() - (1-0e)A3 (1) o, (2.7c)

u(1) _ , (p(1) €()
(I) - A g + ) =0. (2.7d)

Integrating equation (2.7) and equating the constants of integration to zero
gives the state variables of the gas in term of the fluid velocity:

(1) .u() ) L1 0). (2.8), u£'(( ,A(1-0e, - 'e ,0), (2.8)

where the dimensionless velocity I satisfies the relation

- 2 1Be), (2.9)

together with the obvious physical constraint that the fluid-gas mixture is
not purely fluid (0 e = 0) or gaseous (Be 1). This velocity has a minimum
value when 0,= 1/2.~

2Following a similar procedure to the above for the equation of
order 0(c ), in which the effects of dissipation are embedded in the flow, we
find that the parameter n should be choeen as unity. For this choice of n the
second order perturbation equation, together with (2.7), can be expressed as:

Pg (2) + (2)+ P (1) (1) ) +a(u(2g + g u( + , u5 )

3(P (1) + ) 0, (2.10b)

(SB1)S u~' ( - A( 3-) (2)2 + (I) +(1-0 ) (1)U
e e t (0)u (- )ui itu(2)1

+ 9 p(2) uOf (2.10c)

6



a •(P + 4'( 2 }  u 2 ) 0= (21d
q AL 9 ,1.0)'

t gt

A(1-Y )3 (l) - Ygre T(2) i, (2.1Oe)-9 &P g p u-T = ,1.019

p( 2 ) 0(2) T(2 0 (2.10f)
g Og g

a]e 4wp

where a: - t(:i;)2/3 is a dimensionless constant which, in terms of the
e k

momentum relaxation coefficient an e can be expressed as # -= _

The constant T - - - is the thermal relaxation coefficient.T 4ware

3. BURGER'S EQUATION FOR THE SHOCK WAVE STRUCTURE

First-order perturl"Tions in the state variables appearing in (2.10)
can be written in terms of u , via the steady state equations (2.7).

2tuations (2,1?) can then be solved to giv7 2 1 i1 2 1 in terms of
E and u . The partial derivatives are

a (2) 1 (G e u(2) (3.1a)

"ue(2) 1(2)

_2 + 1" _ et (3.1)

2 e

(2) 1 ( , (3.1c

(2 ( u2) X 3~(.d

&q ee ,

where Gj (J-1,2,3) are functions of the first orPer perturbation variables

S l i ' and 0 ) £0..

7



G= = (1 ) + 3), (3.2a)

G (1-e )a U(1)+ (Cu'(141-0 )U(1) + X (3.2b)

G a e M + p(1) + Y(1))(1) (3.2c)3 * Xg g 1 18())

Differentating equation (3.2e) with respect to E, and ustituting for
T(2) using (2.10f) together with (3.2), we find that u 1 satisfies Burger's
equation (Whitham (1974)):

ue tu(1) + u a u (1 ) _ w() = O for T > 0, (3.3)

e TuitT i).

where 8 = -- + E -- 4 is a dimensionless constant which behaves as a

viscosity-like term and is typically the inverse of the Reynolds number.
This term serves to prevent singularities which would occur if 8 = 0. In
equation (3.3) uIu£, is a non-linear convective term and I1/2 eut, is a
diffusive equation viscous term.

The algebraic form of the above equation confirms that the stretched
coordinates (2.5) are appropriate, since equation (3.3) retains terms
describing time-dependent flows with non-linear convection and dissipation.

4. SOLUTIONS FOR A DISCONTINUOUS SHOCK

The general initial-value problem for Burger's equation (3.3) can be
solved exactly by means of a Cole-Hopf transformation (Cole (1951), Hopf
(1950)). This transformation reduces Burger's equation to a classical heat-
conduction equation which can then be solved using integral-transform
methods. In a coordinate system (Z,i), where = t and 'r = Be T, we can
introduce a function E4&,i), which is related to u,, in such a way that:

1 1)u (4.1a)

2 it

and this maybe achieved by noting that the integrability condition is
precisely equation (3.3) (i.e., 3- (4.1a)-3-(4.1b) - 0, yields equation

(3.3)). This non-linear transforiation eliinates the non-linear term

BN



appearing in (3.3). Integration of (4.1a) then yields:

Z exp(- 1- fu( dl). (4.2)

On substituting equation (4.2) into equation (3.3) we find that E is a
solution of the classical heat conduction equation:

EF e , (4.3)

The initial-value problem for Burger's equation is therefore exactly soluble
and pseudo-stationary solutions can be obtained from the ansatz:

, - * - ar),

from which it follows that

*(t) - a(, + exp(-c(t - Z 0

More explicitly, solutions of (4.3) corresponding to a discontinuous shock
wave at = 0 can readily be found. For the case that the initial condition
at T = 0 is

u(1)L) %uuC(<0

ut 0, - 0 > 0,

equation (3.2) yields:

exp(,--) , < 0

:i ,I > o f

where is a continuous function through C - 0 and uo is an arbitrary constant
which can be set equal to unity without loss of generality. This initial
condition is the one which matches the asymptotic form of the near-field
solution (see appendix 1). The solution of (3.3) with this initial condition
can be found by taking a Laplace transform of (3.3) with respect to T. This
yields, in untransformed coordinates (Ockendon and Taylor (1983)):

r exp(t( - -))erfc(-)

ul'/ (4.sa)... ,01 e-o(,;') If2 20i

9



weeerfc(x) I -erf(x) I fx -*
wher (4.a) i j' V and~ da. The initial condition can be

recovered fo (45)i 0an-r 0. in coordinates (x,t) the fluid
velocity (4..5a) may be expressed as

(1 1 exp( .0 (x - t(A +2-)ef((-t

u 1(x,t) u + _5(A e sB 1(2tOe (4.5b)

I erf c( 2tB
e

This solution is similar to that of MS for shock waves propagating into a
viscous heat-conducting gas in the far field. The MS solution is recovered
if 8 20(y +. 1), Oe + 2(y + 1 and A + vf'T.

If we let T + - with kept finite, then (4.5b) reduces to

U 1)(xt)=U (1 + 1/2 exp(- (x - t(A +-)0C 46
(xt 0 8 20 (46

where the following properties of error functions, erfc(0) 1 and

erfc(- m)=2 have been used. This solution represents a shock wave of

4~ us
constant profile propagating with a velocity of X + --.This velocity is a

e

second-order approximation to the Rankine-Hugoniot result for the velocity of
a weak shock (cf Taylor (1910)). The first-order approximation is given by
(2.9). we further observe that if the solution (4.6) is expressed as

g(x,t) u0  (1)M(x~t)

then g(x,t) satisfies the steady-state Burger Equation (cf US where the
asymptotic solution in missing a factor of1/) e.

g'x - 'g, 0*

10
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5 . NUMERICAL ILLUSTRATIN

The forgoing solution3 (4.5b| is illustrated for a shock wave
propagating int9 wtej (P. - 10 kgn-1, ae = 1.51 x 10 a1
V = 8.57 x 10 . - , a a=6.1 x 10 J/(msK), T, - 3006K) containing gas
bubbles of radius r = 10 m . In Figure I and 4 we consider cases where
= .05 or c - .2, 1hat is the volume fraction of gas in the fluid is either

5% or 20%. The velocity profiles are presented for both the linear (Appendix
A-i) and non-linear cases in dimensionless units.

For a small time interval the velocity gradients are very steep and
linear theory is then generally in good agreement with the non-linear
theory. This result is expected since, for t small, dissipative terms are
more important than non-linear convective terms. As t increases, the wave
propagates further into the liquid-gas mixture and the velocity gradients
diminish, leading to a broadening of the shock-wave i.e., non-linear effects
begin to dominate.

When e + 0 the linear and non-linear solutions coalesce and shock
fronts become infinitely steep; see Figures I and 2. Conversely,
if c increases then the two solutions diverge and the velocity gradients
diminish.

The effects of altering the viscosity-like term 8 are shown in
Figures 5 and 6. Increasing 8 (Figure 6) leads to a smearing of the velocity
profile, which might be expected since e contains terms related to momentum
and thermal relaxation. If 8 is reduced, on the other hand, then the velocity
gradient becomes very large (Figure 5).

6. DISCUSSION

The propagation of pressure waves into gas bubbles suspended within
*ja liquid is of some considerable interest. In this paper a mathematical model

is developed which investigates the evolution of a shook wave propagating
within a two-phase fluid, and proceeds with a description of how the
compression wave forms and approaches the final steady state. The model
developed is an extension of the previous linear model of van Leuewn (1985)
and is also a generalization of the work of Moran and Shen (1966), who

*considered the case of a shock wave propagating within a viscous heat-
conducting qas. The linear and non-linear solutions of the flow that have
been developed give a uniformly satisfactory description of the flow.

Important features of the present model are that the avier-Stckes
Equations for a liquid-gas mixture are solved using a perturbation expansion
on the dependent variables and a dilation of the independent variables. This
procedure extends the solution beyond the region where the linear solution
breaks down. Decoupling the resultant partial differential equation leads to



Burger's equation for the velocity of the liquid. By using Laplace transform
techniques this equation can be solved in closed form.

For small values of tine the non-linear solution agrees veil with
the linear one, however for the far field the liquid velocity in the non-
linear case runs ahead of the linear one.
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8o APPWDIX 1

The solution of the Navier-Stokes equations for unsteady flow to
order O(W) has been derived for a shock wave propagating into a liquid-gas
mixture (van Leeuwen, 1984). The dimensionless solution for large times
(i.e., the high frequency case) concomitant to (3.5b) can be written an:

(1) 1 xrc' -At "[_.
u4I (x.t) -2erfc(X - (A-i)

and for the density, pressure and temperature of the gas as:

(1) (1) x --t
P (xt) Pg 9 (x,t) 0 a/2(1-0 )erfc( - , (A-2)

:29t/B
(1)

T (x,t) - 0. (A-3)g

The velocity of the qas is simply:

u ()x,t) - u (lx,t). (A-4)

13.

I 13



00

It I

-J l_0 i.00 100 4.0 2.0 400

DITNEX00

.0, 60.00; t0.00 246.0032000,400,00 ,O.

D ISTANC E X *10 1

FIGURE 1 Liquid velocity profiles according to the Navier-Stokes
equations; - - - - linear solution, --- non-linear solution

=.02, = .05 t 200,400,1000,2000,3000,4000,5000.



--- .---o --

0

>

80el m.68 1-60.06 2,46.00 ADt. 4 "~.
DI[STANCE X *10'

FIGURE 3 Liquid velocity profiles according to the Navier-Stokes
equations; ---- linear solution, ---- non-linear solution '

S=.05, 100 .2; t =200,400,1000,2000,3000,4000,5000. +

UN'

* *

>

o '

is. 16.9 2" 30.0 14.O

DISTANCE X • 101

I 4 Liquid velocity l Otiles according to the Wavieor-Sltokea
equation; -.... liner solution, ---- non-lilnear solution i

€".2, 0 ao.2 t "200,400.1000,2000,3000,4000,3000.

i .!
1 1111



HO?
L80 ;

>

0.- - 00 - 6.0 200 2.0 400

DITAC X 101

FIUR Lqudveoct pofls crin o th IairSae

j

w

0. too a" 31 f
DITAC X 11

14 ~ ~~~~~~~~~~ PIm iudvlct rfls codn oteWv~rSa
eqaios - - I ierslto,---nnlmrslto

.05 00 .5 20 0,0,0020,0040,00



....p..

iidI


